opgaver:Uge1

From Eksperimentel Fysik WIKI
Revision as of 13:35, 5 March 2012 by Pia Jensen (Talk | contribs)
Jump to: navigation, search

Disse statistik-øvelser er redigerede udgaver af opgaverne 3.4, 3.25, 4.6, 4.28, 5.11 og 5.31 fra R. J. Taylor's An Introduction to Error Analysis.

Det er meningen af så meget som muligt af opgaverne skal laves i MATLAB.


Contents

Opgave 1 - Tælletal

Når en prøve med radioaktive atomer henfalder, vil antallet af radioaktive atomer falde, og prøvens radioaktivitet vil falde proportionalt med dette. For at undersøge denne effekt måler en fysiker på partiklerne der udsendes fra en radioaktiv prøve i løbet af to timer. Hun tæller antallet af partikler der udsendes i løbet af en 1 minut lang periode med halve timers intervaller, med følgende resultater:

Tid gået, t (timer): 0.0 0.5 1.0 1.5 2.0
Antal tællinger, ν, på 1 minut: 214 134 101 61 54

Spørgsmål a

Brug MATLAB til at plotte antallet af tællinger imod den tid der er gået. Inkludér errorbars for at vise usikkerheden på tallene. (Negligér usikkerheder i den tid der er gået).

Spørgsmål b

En teori forudsiger at antallet af udsendte partikler burde falde eksponentielt ved ν = ν0 exp(-rt), hvor der (i dette tilfælde) gælder at ν0 = 200 og r = 0.693 hr-1. Plot denne forventede kurve på din graf oven på din tidligere graf, og kommentér på hvor godt dataen ser ud til at passe med den teoretiske forudsigelse.


Opgave 2 - Usikkerheden af et potensudtryk

Fra Taylor's regel (3.10) om usikkerheder af potensudtryk, ved vi at et q = x2 har en relativ usikkerhed der er dobbelt så stor som den relative usikkerhed i x;

File:Uge1tors2eq1.png

Overvej nu det følgende (forkerte) argument: Vi kan tænke på x2 som x gange x, så

File:Uge1tors2eq2.png

derfor vil der ifølge Taylor's regel (3.18) gælde at

File:Uge1tors2eq3.png

Denne konklusion er forkert. Forklar hvorfor.

Bonus: Prøv at undersøge dette i MATLAB ved at sammenligne den relative usikkerhed (SD divideret med gennemsnitsværdien) for en række af tilfældige tal med den relative usikkerhed på samme række af tal kvadreret. Du kan evt. læse i MATLAB-hjælpen hvad funktionen randn gør.


Opgave 3 - Flere tælletal

Opgave 4 - Systematiske fejl

Opgave 5 - Gauss-distributionen

Opgave 6 - Binning



Personal tools
Namespaces
Variants
Actions
Navigation
Opgaver
Andet
Toolbox
Commercial